Learning in indefinite proximity spaces - recent trends

نویسندگان

  • Frank-Michael Schleif
  • Yingyu Liang
چکیده

Efficient learning of a data analysis task strongly depends on the data representation. Many methods rely on symmetric similarity or dissimilarity representations by means of metric inner products or distances, providing easy access to powerful mathematical formalisms like kernel approaches. Similarities and dissimilarities are however often naturally obtained by non-metric proximity measures which can not easily be handled by classical learning algorithms. Major efforts have been undertaken to provide approaches which can either directly be used for such data or to make standard methods available for these type of data. We provide an overview about recent achievements in the field of learning with indefinite proximities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indefinite Proximity Learning: A Review

Efficient learning of a data analysis task strongly depends on the data representation. Most methods rely on (symmetric) similarity or dissimilarity representations by means of metric inner products or distances, providing easy access to powerful mathematical formalisms like kernel or branch-and-bound approaches. Similarities and dissimilarities are, however, often naturally obtained by nonmetr...

متن کامل

Diameter Approximate Best Proximity Pair in Fuzzy Normed Spaces

The main purpose of this paper is to study the approximate best proximity pair of cyclic maps and their diameter in fuzzy normed spaces defined by Bag and Samanta. First, approximate best point proximity points on fuzzy normed linear spaces are defined and four general lemmas are given regarding approximate fixed point and approximate best proximity pair of cyclic maps on fuzzy normed spaces. U...

متن کامل

Non-Archimedean fuzzy metric spaces and Best proximity point theorems

In this paper, we introduce some new classes of proximal contraction mappings and establish  best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...

متن کامل

Smooth biproximity spaces and P-smooth quasi-proximity spaces

The notion of smooth biproximity space  where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...

متن کامل

Best proximity point theorems in 1/2−modular metric spaces

‎In this paper‎, ‎first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points‎. ‎Finally‎, ‎as consequences of these theorems‎, ‎we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces‎. ‎We present an ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016